Strong Consistency of ReducedK-means Clustering
نویسندگان
چکیده
منابع مشابه
Strong Consistency of Prototype Based Clustering in Probabilistic Space
In this paper we formulate in general terms an approach to prove strong consistency of the Empirical Risk Minimisation inductive principle applied to the prototype or distance based clustering. This approach was motivated by the Divisive Information-Theoretic Feature Clustering model in probabilistic space with Kullback-Leibler divergence which may be regarded as a special case within the Clust...
متن کاملStrong consistency of the prototype based clustering in probabilistic space
In this paper we formulate in general terms an approach to prove strong consistency of the Empirical Risk Minimisation inductive principle applied to the prototype or distance based clustering. This approach was motivated by the Divisive Information-Theoretic Feature Clustering model in probabilistic space with Kullback-Leibler divergence, which may be regarded as a special case within the Clus...
متن کاملClustering with Intelligent Linexk-Means
The intelligent LINEX k-means clustering is a generalization of the k-means clustering so that the number of clusters and their related centroid can be determined while the LINEX loss function is considered as the dissimilarity measure. Therefore, the selection of the centers in each cluster is not randomly. Choosing the LINEX dissimilarity measure helps the researcher to overestimate or undere...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scandinavian Journal of Statistics
سال: 2014
ISSN: 0303-6898
DOI: 10.1111/sjos.12074